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ABSTRACT
The Semantic Web envisions a World Wide Web in which data
is described with rich semantics and applications can pose com-
plex queries. To this point, researchers have defined new languages
for specifying meanings for concepts and developed techniques for
reasoning about them, using RDF as the data model. To flour-
ish, the Semantic Web needs to be able to accommodate the huge
amounts of existing data and the applications operating on them.
To achieve this, we are faced with two problems. First, most of
the world’s data is available not in RDF but in XML; XML and
the applications consuming it rely not only on the domain structure
of the data, but also on its document structure. Hence, to provide
interoperability between such sources, we must map between both
their domain structures and their document structures. Second, data
management practitioners often prefer to exchange data through lo-
cal point-to-point data translations, rather than mapping to common
mediated schemas or ontologies.

This paper describes the Piazza system, which addresses these
challenges. Piazza offers a language for mediating between data
sources on the Semantic Web, which maps both the domain struc-
ture and document structure. Piazza also enables interoperation of
XML data with RDF data that is accompanied by rich OWL on-
tologies. Mappings in Piazza are provided at a local scale between
small sets of nodes, and our query answering algorithm is able to
chain sets mappings together to obtain relevant data from across
the Piazza network. We also describe an implemented scenario in
Piazza and the lessons we learned from it.
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1. INTRODUCTION
HTML and the World Wide Web have had amazing impact on the

process of distributing human-readable data to even casual com-
puter users. Yet these technologies are actually quite limited in
scope: Web data lacks machine-understandable semantics, so it is
generally not possible to automatically extract concepts or relation-
ships from this data or to relate items from different sources. The
Web community is attempting to address this limitation by design-
ing a Semantic Web [4]. The Semantic Web aims to provide data
in a format that embeds semantic information, and then seeks to
develop sophisticated query tools to interpret and combine this in-
formation. The result should be a much more powerful knowledge-
sharing environment than today’s Web: instead of posing queries
that match text within documents, a user could ask questions that
can only be answered via inference or aggregation; data could be
automatically translated into the same terminology; information
could be easily exchanged between different organizations.

Much of the research focus on the Semantic Web is based on
treating the Web as a knowledge base defining meanings and rela-
tionships. In particular, researchers have developed knowledge rep-
resentation languages for representing meanings — relating them
within custom ontologies for different domains — and reasoning
about the concepts. Well-known examples include RDF and RDF
Schema, as well as languages that build upon these data models:
DAML+OIL and OWL, the recent standard emerging from the W3C.

The progress on developing ontologies and representation lan-
guages leaves us with two significant problems. The first problem
(also noted by [28]) is that there is a wide disconnect between the
RDF world and most of today’s data providers and applications.
RDF represents everything as a set of classes and properties, cre-
ating a graph of relationships. As such, RDF is focused on identi-
fying the domain structure. In contrast, most existing data sources
and applications export their data into XML, which tends to focus
less on domain structure and more around important objects or en-
tities. Instead of explicitly spelling out entities and relationships,
they often nest information about related entities directly within
the descriptions of more important objects, and in doing this they
sometimes leave the relationship type unspecified. For instance,
an XML data source might serialize information about books and
authors as a list of book objects, each with an embedded author ob-
ject. Although book and author are logically two related objects
with a particular association (e.g., in RDF, author writes book), ap-
plications using this source may know that this document structure
implicitly represents the logical writes relationship.

The vast majority of data sources (e.g., relational tables, spread-
sheets, programming language objects, e-mails, and web logs) use
hierarchical structures and references to encode both objects and
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domain structure-like relationships. Moreover, most application
development tools and web services rely on these structures. Clearly,
it would be desirable for the Semantic Web to be able to inter-
operate with existing data sources and consumers — which are
likely to persist indefinitely since they serve a real need. From
the perspective of building semantic web applications, we need to
be able to map not only between different domain structures of two
sources, but also between their document structures.

The second challenge we face concerns the scale of ontology and
schema mediation on the semantic web. Currently, it is widely be-
lieved that there will not exist a single ontology for any particular
domain, but rather that there will be a few (possibly overlapping)
ones. However, the prevailing culture, at least in the data manage-
ment industry, entails that the number of ontologies/schemas we
will need to mediate among is actually substantially higher. Suppli-
ers of data are not used to mapping their schemas to a select small
set of ontologies (or schemas): it is very hard to build a consensus
about what terminologies and structures should be used. In fact, it
is for this reason that many data warehouse projects tend to fail pre-
cisely at the phase of schema design [33]. Interoperability is typi-
cally attained in the real world by writing translators (usually with
custom code) among small sets of data sources that are closely re-
lated and serve similar needs, and then gradually adding new trans-
lators to new sources as time progresses. Hence, this practice sug-
gests a practical model for how to develop a large-scale system like
the Semantic Web: we need an architecture that enables building
a web of data by allowing incremental addition of sources, where
each new source maps to whatever sources it deems most conve-
nient — rather than requiring sources to map to a slow-to-evolve
and hard-to-manage standard schema. Of course, in the case of the
Semantic Web, the mappings between the sources should be speci-
fied declaratively. To complement the mappings, we need efficient
algorithms that can follow semantic paths to obtain data from dis-
tant but related nodes on the web.

This paper describes the Piazza system, which provides an in-
frastructure for building Semantic Web applications, and addresses
the aforementioned problems. A Piazza application consists of
many nodes, each of which can serve either or both of two roles:
supplying source data with its schema, or providing only a schema
(or ontology). A very simple node might only supply data (perhaps
from a relational database); at the other extreme, a node might sim-
ply provide a schema or ontology to which other nodes’ schemas
may be mapped. The semantic glue in Piazza is provided by lo-
cal mappings between small sets (usually pairs) of nodes. When a
query is posed over the schema of a node, the system will utilize
data from any node that is transitively connected by semantic map-
pings, by chaining mappings. Piazza’s architecture can accommo-
date both local point-to-point mappings between data sources, as
well as collaboration through select mediated ontologies. Since the
architecture is reminiscent of peer-to-peer architectures, we refer to
Piazza as a peer data management system (PDMS).

We make the following specific contributions.

� We propose a language for mediating between nodes that
allows mapping simple forms of domain structure and rich
document structure. The language is based on XQuery [6],
the emerging standard for querying XML. We also show that
this language can map between nodes containing RDF data
and nodes containing XML data.

� We describe an algorithm for answering queries in Piazza
that chains semantic mappings specified in our language. The
challenge in developing the algorithm is that the mappings
are directional, and hence may sometimes need to be tra-

versed in reverse. In fact, the algorithm can also go in re-
verse through mappings from XML to RDF that flatten out
the document structure. Previous work [16] has presented
an analogous algorithm for the simple case where all data
sources are relational. Here we extend the algorithms con-
siderably to the XML setting.

� Finally, we describe an implemented scenario using Piazza
and several observations from this experience. The scenario
includes 15 nodes (based on the structures and data of real
web sites) that provide information about different aspects of
the database research community.

At a more conceptual level, we believe that Piazza paves the way
for a fruitful combination of data management and knowledge rep-
resentation techniques in the construction of the Semantic Web. In
fact, we emphasize that the techniques offered in Piazza are not
a replacement for rich ontologies and languages for mapping be-
tween ontologies. Our goal is to provide the missing link between
data described using rich ontologies and the wealth of data that is
currently managed by a variety of tools. See [19] for a discussion
of additional challenges in this area.

The paper is organized as follows. Section 2 provides an overview
of Piazza, and Section 3 describes the language for mapping be-
tween nodes in Piazza. Section 4 presents the key algorithm under-
lying query answering in Piazza. In Section 5 we offer our experi-
ences from implementing the scenario. Section 6 describes related
work, and Section 7 concludes.

2. SYSTEM OVERVIEW
We begin by providing an overview of the concepts underlying

Piazza and our approach to building Semantic Web applications.

2.1 Data, Schemas, and Queries
Our ultimate goal with Piazza is to provide query answering and

translation across the full range of data, from RDF and its asso-
ciated ontologies to XML that has a substantially less expressive
schema language. The main focus of this paper is on sharing XML
data, but we also explain how to accommodate richer types of data.

Today, most commercial and scientific applications have facili-
ties for automatically exporting their data into XML form. Hence,
for the purpose of our discussion, we can consider XML to be the
standard representation of a wide variety of data sources (as do
others [28]). In some cases, accessing the actual data may require
an additional level of translation (e.g., with systems like [13, 31]).
Perhaps of equal importance, many applications, tools, and pro-
gramming languages or libraries have facilities for loading, pro-
cessing, and importing XML data. In the ideal case, one could map
the wealth of existing XML-style data into the Semantic Web and
query it using Semantic Web tools; correspondingly, one could take
the results of Semantic Web queries and map them back into XML
so they can be fed into conventional applications.

RDF is neutral with respect to objects’ importance: it repre-
sents a graph of interlinked objects, properties, and values. RDF
also assigns uniform semantic meaning to certain reserved objects
(e.g., containers) and properties (e.g., identifiers, object types, ref-
erences). Relationships between pairs of objects are explicitly named.

The main distinctions between RDF and unordered XML1 are
that XML (unless accompanied by a schema) does not assign se-
mantic meaning to any particular attributes, and XML uses hierar-
chy (membership) to implicitly encode logical relationships. Within
�
In this paper we consider only unordered XML; order information

can still be encoded within the data.
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an XML hierarchy, the central objects are typically at the top, and
related objects are embedded as subelements within the document
structure; this embedding of objects creates binary relationships.
Of course, XML may also include links and can represent arbi-
trary graphs, but the predominant theme in XML data is nesting.
Whereas RDF names all binary relationships between pairs of ob-
jects, XML typically does not. The semantic meaning of these re-
lationships is expressed within the schema or simply within the in-
terpretation of the data. Hence, it is important to note that although
XML is often perceived as having only a syntax, it is more accu-
rately viewed as a semantically grounded encoding for data, in a
similar fashion to a relational database. Importantly, as pointed out
by Patel-Schneider and Simeon [28], if XML is extended simply
by reserving certain attributes to serve as element IDs and IDREFs,
one can maintain RDF semantics in the XML representation.

As with data, the XML and RDF worlds use different formalisms
for expressing schema. The XML world uses XML Schema, which
is based on object-oriented classes and database schemas: it de-
fines classes and subclasses, and it specifies or restricts their struc-
ture and also assigns special semantic meaning (e.g., keys or ref-
erences) to certain fields. In contrast, languages such as RDFS,
DAML+OIL [17] and OWL [9] come from the Knowledge Rep-
resentation (KR) heritage, where ontologies are used to represent
sets of objects in the domain and relationships between sets. OWL
uses portions of XML Schema to express the structure of so-called
domain values. In the remainder of this paper, we refer to OWL as
the representative of this class of languages.

It is important to note that some of the functionality of KR de-
scriptions and concept definitions can be captured in the XML world
(and more generally, in the database world) using views. In the KR
world, concept definitions are used to represent a certain set of ob-
jects based on constraints they satisfy, and they are compared via
subsumption algorithms. In the XML world, queries serve a similar
purpose, and furthermore, when they are named as views, they can
be referenced by other queries or views. Since a view can express
constraints or combine data from multiple structures, it can per-
form a role like that of the KR concept definition. Queries can be
compared using query containment algorithms. There is a detailed
literature that studies the differences between the expressive power
of description logics and query languages and the complexity of
the subsumption and containment problem for them (e.g., [21]).
For example, certain forms of negation and number restrictions,
when present in query expressions, make query containment un-
decidable, while arbitrary join conditions cannot be expressed and
reasoned about in description logics.

Many different types of semantic mappings are required in con-
verting within and between the XML and RDF worlds: one-to-one
correspondences may occur between concepts, requiring simple re-
namings; more complex, n-to-m-entity correspondences may re-
quire join-like operations; there may be complex restructurings of
concept definitions in going from one format to another (especially
when XML is involved); and some complex concept definitions
may require significant inference capabilities. For several reasons
we focus on an XQuery-based approach to defining mappings: (1)
it is important to be able to map existing XML data into RDF, and
this requires the strong restructuring, joining, and renaming capa-
bilities of XQuery; (2) existing, scalable, and practical techniques
have been developed for reasoning about query-based mappings
in the database community, and we can leverage these; (3) while
XQuery views are less expressive than OWL concept definitions,
they can capture many common types of semantic mappings, and
we expect that they can be supplemented with further OWL con-
structs as necessary.

2.2 Data Sharing and Mediation
Logically, a Piazza system consists of a network of different sites

(also referred to as peers or nodes), each of which contributes re-
sources to the overall system. The resources contributed by a site
include one or more of the following: (1) ground or extensional
data, e.g., XML or RDF data instances, (2) models of data, e.g.,
XML schema or OWL ontologies. In addition, nodes may supply
computed data, i.e., cached answers to queries posed over other
nodes.

When a new site (with data instance or schema) is added to the
system, it is semantically related to some portion of the existing
network, as we describe in the next paragraph. Queries in Piazza
are always posed from the perspective of a given site’s schema,
which defines the preferred terminology of the user. When a query
is posed, Piazza provides answers that utilize all semantically re-
lated XML data within the system2.

In order to exploit data from other sites, there must be semantic
glue between the sites, in the form of semantic mappings. Map-
pings in Piazza are specified between small numbers of sites, usu-
ally pairs. In this way, we are able to support the two rather dif-
ferent methods for semantic mediation mentioned earlier: medi-
ated mapping, where data sources are related through a mediated
schema or ontology, and point-to-point mappings, where data is
described by how it can be translated to conform to the schema of
another site. Admittedly, from a formal perspective, there is little
difference between these two kinds of mappings, but in practice,
content providers may have strong preferences for one or the other.

The actual formalism for specifying mappings depends on the
kinds of sites we are mapping. There are three main cases, depend-
ing on whether we are mapping between pairs of OWL/RDF nodes,
between pairs of XML/XML Schema nodes, or between nodes of
different types.

Pairs of OWL/RDF nodes: OWL itself already provides the con-
structs necessary for mapping between two OWL ontologies. Specif-
ically, OWL’s owl:equivalentProperty construct declares that two
edge labels denote the same relationship. The owl:equivalentClass
construct is even more powerful: one can use it to create a boolean
combination of the classes in a source ontology and equate that
to a class (or even another boolean combination) in a target ontol-
ogy. In principle, the reasoning procedures for OWL can be used to
provide reasoning across ontologies, and hence integrate data from
multiple nodes. Performing such reasoning efficiently raises many
interesting research questions.

Pairs of XML/XML Schema nodes: This case is more challeng-
ing because it does not make sense to simply assert that two struc-
tures should be considered the same. To illustrate the challenges as-
sociated with designing a language for mapping between two XML
nodes, consider the following example.

EXAMPLE 2.1. Suppose we want to map between two sites. Sup-
pose the target contains books with nested authors; the source con-
tains authors with nested publications. We illustrate partial schemas
for these sources below, using a format in which indentation illus-
trates nesting and a * suffix indicates “0 or more occurrences of...”,
as in a BNF grammar.

�
It is also be possible to let the user narrow the set of sites consid-

ered in a query; this does not introduce any difficulties.



www.manaraa.com

Target:
pubs

book*
title
author*

name
publisher*

name

Source:
authors

author*
full-name
publication*

title
pub-type

In general, it should be possible to specify mappings in either
direction (for reasons we discuss in the next section), and mappings
must have two important capabilities:

� Translation of domain structure and terminology: In the
simple case, we must be able to perform simple renamings
from one concept (XML tag label) to another, either glob-
ally or within a certain subtree or context. For instance, we
want to state that every occurrence of the full-name tag in S2
matches the name tag in S1. On the other hand, if we create
a mapping in the reverse direction, name in S1 only corre-
sponds to full-name in S2 when it appears within an author
tag. In some cases, the terminological translations involve
additional conditions. For instance, a title entry in site S2 is
only equivalent to a book title in S1 if the pub-type is book.

� Translation of document structure: We must be able to
map between different nesting structures. Source S1 is book-
centric and S2 is author-centric. In order to do this, we must
be able to coalesce groups of items when they are associated
with the same entity — every time we see a book with the
same name in S1, we should insert the book’s title (within
a publication element and with a pub-type of book) into the
same author element in S2.

Section 3 describes our mapping specification language for map-
pings between XML/XML Schema nodes, which achieves these
goals. The language is based on features of the XQuery XML query
language [6], which is able to specify rich transformations.

XML-to-RDF mappings: There are two issues when mapping be-
tween XML to RDF/OWL data. The first is expressive power —
clearly, we cannot map all the concepts in an OWL ontology into
an XML schema and preserve their semantics. It is inevitable that
we will lose some information in such a mapping. In practice, we
need to ensure that the XML schema of a node is rich enough for
the queries that are likely to be posed at the node.

The second issue is how to rebuild the appropriate document
structure when transferring data from the OWL ontology into XML.
We illustrate the challenge below.

EXAMPLE 2.2. Suppose we have a simple network with three
nodes: � and � are XML nodes and � is an RDF node with an
associated OWL ontology. XML Node � contains author informa-
tion, including books written by the author, nested within author
elements (and a given book may appear under multiple author el-
ements). Node � contains book information, including authors,
nested within book elements (again, an author may appear within
multiple books). Hence, nodes � and � contain the same data but
in different structures. Finally, Node � is a rich OWL ontology de-
scribing the Publishing world. Among other concept definitions, it
contains two classes (Author and Book) and one property (writes).
The relationship in � can be encoded in RDF using the definition:

<rdf:Description rdf:about="authorID"
rdf:type="Author">

<P:writes rdf:resource="bookID"/>
</rdf:Description>

The important point to note is that once data has been mapped
(using the mapping language described in Section 3) from nodes
� or � to RDF, it loses its original document structure. In fact,
the two different structures of nodes � and � are mapped to the
same RDF. Our mapping language can be used to map from the
XML of � and � into XML-encoded RDF at � . We could also
write mappings in the opposite direction, from the RDF to XML,
that restore the document structure. However, we would like to
avoid having to write two mappings in every case. In fact, as we
explain in the next section, we may compromise expressive power
by forcing mappings in both directions.

Hence, suppose we have two mappings �
	�� and ��	�
from the XML to the RDF. Answering a query over the RDF is
conceptually easy. Note that the RDF query is oblivious to docu-
ment structure. The interesting case occurs when a query is posed
over one of the XML sources, say node � . Here, we must use �
as an intermediate node for getting data from node � . Data from
� is first mapped into RDF form using the ��	�� mapping, “flat-
tening” it and relating it to the ontology at � . Then, we need to
somehow use the mapping ��	�� in reverse in order to answer
the � query. In Section 4 we describe an algorithm that is also able
to use XML-to-RDF mappings in the reverse direction. With that
algorithm, we can follow any semantic path in Piazza, regardless
of the direction in which the mappings are specified.

In summary, the language we describe in Section 3 offers a mech-
anism for inter-operation of XML/XML Schema nodes and RDF/OWL
nodes. It enables mapping between XML nodes and between an
XML node and an RDF node.

2.3 Query Processing
Given a set of sites, the semantic mappings between them, and a

query at a particular site, the key problem we face is how to process
queries. The problem is at two levels: (1) how to obtain semanti-
cally correct answers, and (2) how to process the queries efficiently.
In this paper we focus mostly on the first problem, called query re-
formulation. Section 4 describes a query answering algorithm for
the Piazza mapping language: given a query at a particular site,
we need to expand and translate it into appropriate queries over se-
mantically related sites, as well. Query answering may require that
we follow semantic mappings in both directions. In one direction,
composing semantic mappings is simply query composition for an
XQuery-like language. In the other direction, composing mappings
requires using mappings in the reverse direction, which is known
as the problem of answering queries using views [15]. These two
problems are well understood in the relational setting (i.e., when
data is relational and mappings are specified as some restricted ver-
sion of SQL), but they have only recently been treated in limited
XML settings.

3. MAPPINGS IN PIAZZA
In this section, we describe the language we use for mapping

between sites in a Piazza network. As described earlier, we focus
on nodes whose data is available in XML (perhaps via a wrapper
over some other system). Each node has a schema, expressed
in XML Schema, which defines the terminology and the structural
constraints of the node. We make a clear distinction between the in-
tended domain of the terms defined by the schema at a node and the
actual data that may be stored there. Clearly, the stored data con-
forms to the terms and constraints of the schema, but the intended
domain of the terms may be much broader than the particular data
stored at the node. For example, the terminology for publications
applies to data instances beyond the particular ones stored at the
node.
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Given this setting, mappings play two roles. The first role is as
storage descriptions that specify which data is actually stored at a
node. This allows us to separate between the intended domain and
the actual data stored at the node. For example, we may specify
that a particular node contains publications whose topic is Com-
puter Science and have at least one author from the University of
Washington. The second role is as schema mappings, which de-
scribe how the terminology and structure of one node correspond
to those in a second node. The language for storage mappings is a
subset of the language for schema mappings, hence our discussion
focuses on the latter.

The ultimate goal of the Piazza system is to use mappings to
answer queries; we answer each query by rewriting it using the in-
formation in the mapping. Of course, we want to capture structural
as well as terminological correspondences. As such, it is important
that the mapping capture maximal information about the relation-
ship between schemas, but also about the data instances themselves
— since information about content can be exploited to more pre-
cisely answer a query.

The field of data integration has spent many years studying tech-
niques for precisely defining such mappings with relational data,
and we base our techniques on this work. In many ways, the vision
of Piazza is a broad generalization of data integration: in conven-
tional data integration, we have a mediator that presents a mediated
schema, and a set of data sources that are mapped to this single
mediated schema; in Piazza, we have a web of sites and semantic
mappings.

The bulk of the data integration literature uses queries (views) as
its mechanism for describing mappings: views can relate disparate
relational structures, and can also impose restrictions on data val-
ues. There are two standard ways of using views for specifying
mappings in this context: data sources can be described as views
over the mediated schema (this is referred to as local-as-view or
LAV), or the mediated schema can be described as a set of views
over the data sources (global-as-view or GAV). The direction of the
mapping matters a great deal: it affects both the kinds of queries
that can be answered and the complexity of using the mapping to
answer the query. In the GAV approach, query answering requires
only relatively simple techniques to “unfold” (basically, macro-
expand) the views into the query so it refers to the underlying data
sources. The LAV approach requires more sophisticated query re-
formulation algorithms (surveyed in [15]), because we need to use
the views in the reverse direction. It is important to note that in
general, using a view in the reverse direction is not equivalent to
writing an inverse mapping.

As a result of this, LAV offers a level of flexibility that is not pos-
sible with GAV. In particular, the important property of LAV is that
it enables to describe data sources that organize their data differ-
ently from the mediated schema. For example, suppose the medi-
ated schema contains a relationship Author, between a paper-id and
an author-id. A data source, on the other hand, has the relationship
CoAuthor that relates two author-id’s. Using LAV, we can express
the fact that the data source has the join of Author with itself. This
description enables us to answer certain queries — while it is not
possible to use the source to find authors of a particular paper, we
can use the source to find someone’s co-authors, or to find authors
who have co-authored with at least one other. With GAV we would
lose the ability to answer these queries, because we lose the as-
sociation between co-authors. The best we could say is that the
source provides values for the second attribute of Author.3 (Recall
�
In principle one could define a CoAuthor view in the mediated

schema, and map the data source to the view. However, the prob-
lem of query answering would be identical to the LAV scenario.

that the relational data model is very weak at modeling incomplete
information.)

This discussion has a very important consequence as we con-
sider mappings in Piazza. When we map between two sites, our
mappings, like views, will be directional. One could argue that we
can always provide mappings in both directions, and even though
this doubles our mapping efforts, it avoids the need for using map-
pings in reverse during query reformulation. However, when two
sites organize their schemas differently, some semantic relation-
ships between them will be captured only by the mapping in one
of the directions, and this mapping cannot simply be inverted. In-
stead, these semantic relationships will be exploited by algorithms
that can reverse through mappings on a per-query basis, as we il-
lustrated in our example above. Hence, the ability to use mappings
in the reverse direction is a key element of our ability to share data
among sites, and therefore the focus of Section 4.

Our goal in Piazza is to leverage this work — both LAV and GAV
— from data integration, but to extend it in two important direc-
tions. First, we must extend the basic techniques from the two-tier
data integration architecture to the peer data management system’s
heterogeneous, graph-structured network of interconnected nodes;
this was the focus of our work in [16]. Our second direction, which
we discuss in this paper, is to move these techniques into the realms
of XML as well as its serializations of RDF.

Following the data integration literature, which uses a standard
relational query language for both queries and mappings, we might
elect to use XQuery for both our query language and our language
for specifying mappings. However, we found XQuery inappro-
priate as a mapping language for the following reasons. First, an
XQuery user thinks in terms of the input documents and the trans-
formations to be performed. The mental connection to a required
schema for the output is tenuous, whereas our setting requires think-
ing about relationships between the input and output schemas. Sec-
ond, the user must define a mapping in its entirety before it can be
used. There is no simple way to define mappings incrementally
for different parts of the schemas, to collaborate with other experts
on developing sub-regions of the mapping, etc. Finally, XQuery
is an extremely powerful query language (and is, in fact, Turing-
complete), and as a result some aspects of the language make it
difficult or even impossible to reason about.

3.1 The Mapping Language
Our approach is to define a mapping language that borrows ele-

ments of XQuery, but is more tractable to reason about and can be
expressed in piecewise form. Mappings in the language are defined
as one or more mapping definitions, and they are directional from
a source to a target: we take a fragment of the target schema and
annotate it with XML query expressions that define what source
data should be mapped into that fragment. The mapping language
is designed to make it easy for the mapping designer to visualize
the target schema while describing where its data originates.

Conceptually, the results of the different mapping definitions are
combined to form a complete mapping from the source document
to the target, according to certain rules. For instance, the results
of different mapping definitions can often be concatenated together
to form the document, but in some cases different definitions may
create content that should all be combined into a single element;
Piazza must “fuse” these results together based on the output ele-
ment’s unique identifiers (similar to the use of Skolem functions in
languages such as XML-QL [10]). A complete formal description
of the language would be too lengthy for this paper. Hence, we de-
scribe the main ideas of the language and illustrate it via examples.

Each mapping definition begins with an XML template that matches
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some path or subtree of a legal instance of the target schema, i.e.,
a prefix of a legal string in the target DTD’s grammar. Elements
in the template may be annotated with query expressions (in a sub-
set of XQuery) that bind variables to XML nodes in the source;
for each combination of bindings, an instance of the target element
will be created. Once a variable is bound, it can be referenced any-
where within its scope, which is defined to be the enclosing tags of
the template. Variable bindings can be output as new target data,
or they can be referenced by other query expressions to correlate
data in different areas of the mapping definition. The following is
a basic example of the language for the sites in Example 2.1.

<pubs>
<book>

{: $a IN document("source.xml")\
/authors/author,

$t IN $a/publication/title,
$typ IN $a/publication/pub-type
WHERE $typ = "book" :}

<title>{ $t }</title>
<author>
<name> {: $a/full-name :} </name>

</author>
</book>

</pubs>

Where we make variable references within
� � braces and delimit

query expression annotations by
�
: : � . This mapping definition

will instantiate a new book element in the target for every occur-
rence of variables $a, $t, and $typ, which are bound to the au-
thor, title, and publication-type elements in the source, respectively.
We construct a title and author element for each occurrence of the
book. The author name contains a new query expression annotation
($a/full-name), so this element will be created for each match
to the XPath expression (for this schema, there should only be one
match).

The example mapping will create a new book element for each
author-publication combination. This is probably not the desired
behavior, since a book with multiple authors will appear as mul-
tiple book entries, rather than as a single book with multiple au-
thor subelements. To enable the desired behavior in situations like
this, Piazza reserves a special piazza:id attribute in the target
schema for mapping multiple binding instances to the same output:
if two elements created in the target have the same tag name and
ID attribute, then they will be coalesced — all of their attributes
and element content will be combined. This coalescing process is
repeated recursively over the combined elements. We can modify
our mapping to the following:

EXAMPLE 3.1.
<pubs>

<book piazza:id={$t}>
{: $a IN document("source.xml")\

/authors/author,
$t IN $a/publication/title,
$typ IN $a/publication/pub-type
WHERE $typ = "book" :}

<title piazza:id={$t}>{ $t }</title>
<author piazza:id={$t}>
<name> {: $a/full-name :} </name>

</author>
</book>

</pubs>
The sole difference from the previous example is the use of the

piazza:id attribute. We have determined that book titles in our col-
lection are unique, so every occurrence of a title in the data source
refers to the same book. Identical books will be given the same

piazza:id and coalesced; likewise for their title and author subele-
ments (but not author names). Hence, in the target we will see all
authors nested under each book entry. This example shows how we
can invert hierarchies in going from source to target schemas.

Sometimes, we may have detailed information about the values
of the data being mapped from the source to the target — perhaps
in the above example, we know that the mapping definition only
yields book titles starting with the letter “A.” Perhaps more inter-
estingly, we may know something about the possible values of an
attribute present in the target but absent in the source — such as
the publisher. In Piazza, we refer to this sort of meta-information as
properties. This information can be used to help the query answer-
ing system determine whether a mapping is relevant to a particular
query, so it is very useful for efficiency purposes.

EXAMPLE 3.2. Continuing with the previous schema, consider
the partial mapping:

<pubs>
<book piazza:id={$t}>

{: $a IN document("source.xml")\
/authors/author,

$t IN $a/publication/title,
$typ IN $a/publication/pub-type
WHERE $typ = "book"
PROPERTY $t >= ’A’ AND $t < ’B’

:}
[:
<publisher>
<name>

{: PROPERTY $this IN
{"PrintersInc", "PubsInc"} :}

</name>
</publisher>
:]

</book>
</pubs>

The first PROPERTY definition specifies that we know this map-
ping includes only titles starting with “A.” The second defines a
“virtual subtree” (delimited by [: :]) in the target. There is in-
sufficient data at the source to insert a value for the publisher name;
but we can define a PROPERTY restriction on the values it might
have. The special variable $this allows us to establish a known
invariant about the value at the current location within the virtual
subtree: in this case, it is known that the publisher name must be
one of the two values specified. In general, a query over the target
looking for books will make use of this mapping; a query looking
for books published by BooksInc will not. Moreover, a query look-
ing for books published by PubsInc cannot use this mapping, since
Piazza cannot tell whether a book was published by PubsInc or by
PrintersInc.

3.2 Semantics of Mappings
We briefly sketch the principles underlying the semantics of our

mapping language. At the core, the semantics of mappings can be
defined as follows. Given an XML instance, ��� , for the source node�

and the mapping to the target � , the mapping defines a subset of
an instance, ��� , for the target node. The reason that ��� is a subset
of the target instance is that some elements of the target may not
exist in the source (e.g., the publisher element in the examples). In
fact, it may even be the case that required elements of the target
are not present in the source. In relational terms, ��� is a projec-
tion of some complete instance ���� of � on a subset of its elements
and attributes. In fact, ��� defines a set of complete instances of �
whose projection is � � . When we answer queries over the target � ,
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we provide only the answers that are consistent with all such � �� s
(known as the certain answers [1], the basis for specifying seman-
tics in the data integration literature). It is important to note that
partial instances of the target are useful for many queries, in partic-
ular, when a query asks for a subset of the elements. Instances for
� may be obtained from multiple mappings (and instances of the
sources, in turn, can originate from multiple mappings), and as we
described earlier, may be the result of coalescing the data obtained
from multiple bindings using the piazza:id attribute.

A mapping between two nodes can either be an inclusion or an
equality mapping. In the former case, we can only infer instances
of the target from instances of the source. In the latter case, we
can also infer instances of the source from instances of the target.
However, since the mapping is defined from the source to the tar-
get, using the mapping in reverse requires special reasoning. The
algorithm for doing such reasoning is the subject of Section 4. Fi-
nally, we note that storage descriptions, which relate the node’s
schema to its actual current contents allow for both the open-world
assumption or the closed-world assumption. In the former case, a
node is not assumed to store all the data modeled by its schema
(it describes a general concept more inclusive than the data it pro-
vides, e.g., all books published, and new data sources may provide
additional data for this schema), while in the latter case it holds the
complete set of all data relevant to its concept (e.g., all books pub-
lished by major publishers since 1970). In practice, very few data
sources have complete information.

3.3 Discussion
To complete the discussion of our relationship to data integra-

tion, we briefly discuss how our mapping language relates to the
LAV and GAV formalisms. In our language, we specify a mapping
from the perspective of a particular target schema — in essence, we
define the target schema using a GAV-like definition relative to the
source schemas. However, two important features of our language
would require LAV definition in the relational setting. First, we can
map data sources to the target schema even if the data sources are
missing attributes or subelements required in the source schema.
Hence, we can support the situation where the source schema is
a projection of the target. Second, we support the notion of data
source properties, which essentially describes scenarios in which
the source schema is a selection on the target schema.

Hence, our language combines the important properties of LAV
and GAV. It is also interesting to note that although query answer-
ing in the XML context is fundamentally harder than in the rela-
tional case, specifying mappings between XML sources is more
intuitive. The XML world is fundamentally semistructured, so it
can accommodate mappings from data sources that lack certain at-
tributes — without requiring null values. In fact, during query an-
swering we allow mappings to pass along elements from the source
that do not exist in the target schema — we would prefer not to dis-
card these data items during the transitive evaluation of mappings,
or query results would always be restricted by the lowest-common-
denominator schemas along a given mapping chain. For this rea-
son, we do not validate the schema of answers before returning
them to the user.

4. QUERY ANSWERING ALGORITHM
Given a set of mappings, our goal is to be able to answer queries

posed over any peer’s schema, making use of all relevant (mapped)
data. We do this at runtime rather than mapping the data once and
later answering queries: this allows us to provide “live” answers
as source data changes, and we can sometimes exploit “partial”
mappings to answer certain queries, even if those mappings are

insufficient to entirely transform data from one schema to another.
This section describes Piazza’s query answering algorithm, which

performs the following task: given a network of Piazza nodes with
XML data, a set of semantic mappings specified among them, and
a query over the schema of a given node, efficiently produce all
the possible certain answers that can be obtained from the system.
A user’s query is posed over a node’s logical schema, which may
be defined in terms of incomplete data sources (e.g., we may de-
fine the concept “all books published” but may not have complete
knowledge of these books). Certain answers are those results that
are guaranteed to be in the logical schema in order for it to be con-
sistent with the mappings and the existing source data.

From a high level, an algorithm proceeds along the following
lines. Given a query � posed over the schema of node � , we first
use the storage descriptions of data in � (i.e., the mappings that
describe which data is actually stored at � ) to rewrite � into a
query � � over the data stored at � . Next, we consider the semantic
neighbors of � , i.e., all nodes that are related to elements of � ’s
schema by semantic mappings. We use these mappings to expand
the reformulation of query � to a query ��� � over the neighbors of
� . In turn, we expand � � � so it only refers to stored data in � and its
neighbors; then we union it with � � , eliminating any redundancies.
We repeat this process recursively, following all mappings between
nodes’ schemas, and the storage mappings for each one, until there
are no remaining useful paths.

Ignoring optimization issues, the key question in designing such
an algorithm is how to reformulate a query � over its semantic
neighbors. Since semantic mappings in Piazza are directional from
a source node

�
to a target node � , there are two cases of the re-

formulation problem, depending on whether � is posed over the
schema of

�
or over that of � . If the query is posed over � , then

query reformulation amounts to query composition: to use data at�
, we compose the query � with the query (or queries) defining �

in terms of
�

. Our approach to query composition is based on that
of [13], and we do not elaborate on it here.

The second case is when query is posed over
�

and we wish to
reformulate it over � . Now both � and � are defined as queries
over

�
. In order to reformulate � , we need to somehow use the

mapping in the reverse direction, as explained in the previous sec-
tion. This problem is known as the problem of answering queries
using views (see [15] for a survey), and is conceptually much more
challenging. The problem is well understood for the case of rela-
tional queries and views, and we now describe an algorithm that
applies to the XML setting. The key challenge we address for the
context of XML is the nesting structure of the data (and hence of
the query) — relational data is flat.

4.1 Query Representation
Our algorithm operates over a graph representation of queries

and mappings. Suppose we are given the following XQuery for all
advisees of Ullman, posed over source S1:

<result> {
for $faculty in /S1/people/faculty,

$name in $faculty/name/text(),
$advisee in $faculty/advisee/text()

where $name = "Ullman"
return

<student> {$advisee} </student>
}
</result>

The query is represented graphically by the leftmost portion of
Figure 1. Note that the result element in the query simply spec-
ifies the root element for the resulting document. Each box in the
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people

S1

faculty

name advisee

<student> {$advisee}

$name="Ullman"

<result> <S2>

S1

<people> people

<faculty>

faculty
name

{$name}

student
<student>

<advisor>

faculty

$advisee=$student
{$name}

adviseename

{$student}<name>

Query: Mapping: <S2>

<people> {: $people=/S1/people :}

<faculty>{: $name=$people/faculty/name/text():}
{ $name }

</faculty>

<student>{: $student=$people/student/text():}
<name> { $student } </name>

<advisor>{: $faculty=$people/faculty,
$name=$faculty/name/text(),
$advisee=$faculty/advisee/text()
where $advisee=$student :}

{ $name }
</advisor>

</student>
</people>

</S2>

Figure 1: Matching a query tree pattern into a tree pattern of a schema mapping. The matching tree patterns are shown in bold.
The schema mapping corresponding to the middle graph is shown on the right.

figure corresponds to a query block, and indentation indicating the
nesting structure. With each block we associate the following con-
structs that are manipulated by our algorithm:

A set of tree patterns: XQuery’s FOR clause binds variables,
e.g., $faculty in /S1/people/faculty binds the vari-
able $faculty to the nodes satisfying the XPath expression. The
bound variable can then be used to define new XPath expressions
such as $faculty/name and bind new variables. Our algorithm
consolidates XPath expressions into logically equivalent tree pat-
terns for use in reformulation4. For example, the tree pattern for
our example query is indicated by the thick forked line in the left-
most portion of Figure 1.

For simplicity of presentation, we assume here that every node in
a tree pattern binds a single variable; the name of the variable is the
same as the tag of the corresponding tree pattern node. Hence, the
node advisee of the tree pattern binds the variable $advisee.

A set of predicates: a predicate in a query specifies a condition
on one or two of the bound variables. Predicates are defined in
the XQuery WHERE clause over the variables bound in the tree
patterns. The variables referred to in the predicate can be bound by
different tree patterns. In our example, there is a single predicate:
name="Ullman". If a predicate involves a comparison between
two variables, then it is called a join predicate, because it essentially
enforces a relational join.

Output results: output, specified in the XQuery RETURN clause,
consists of element or attribute names and their content. An ele-
ment tag name is usually specified in the query as a string literal,
but it can also be the value of a variable. This is an important
feature, because it enables transformations in which data from one
source becomes schema information in another. In our query graph
of Figure 1, an element tag is shown in angle brackets. Hence, the
element tag of the top-level block is result. The element tag of the
inner block is student. The contents of the returned element of a
query block may be a sequence of elements, attributes, string liter-
als, or variables. (Note that our algorithm does not support “mixed
content,” in which subelements and data values may be siblings, as
this makes reformulation much harder.) We limit our discussion to
the case of a single returned item. In the figure, the variable/value
returned by a query block is enclosed in curly braces. Thus, the
�
We focus on the subset of XPath that corresponds to regular path

expressions, so tree patterns capture the required semantics.

top level block of our example query has empty returned contents,
whereas the inner block returns the value of the $advisee variable.

We use the same representation for mappings as for queries. In
this case, the nesting mirrors the template of the target schema.
The middle of Figure 1 shows the graph representation of the map-
ping shown on the right of the figure. The mapping is between
the following schemas. (The schemas differ in how they represent
advisor-advisee information. S1 puts advisee names under the cor-
responding faculty advisor whereas S2 does the opposite by nesting
advisor names data under corresponding students.)

S1 S2
people people

faculty* faculty*
name student
advisee* name

student* advisor*

4.2 The Rewriting Algorithm
Our algorithm makes the following simplifying assumptions ab-

out the queries and the mappings (we note that in the scenario we
implemented, all the mappings satisfied these restrictions). First,
we assume the query over the target schema contains a single non-
trivial block, i.e., a block that includes tree patterns and/or predi-
cates. The mapping, on the other hand, is allowed to contain an
arbitrary number of blocks. Second, we assume that all “returned”
variables are bound to atomic values, i.e., text() nodes, rather
than XML element trees (this particular limitation can easily be re-
moved by expanding the query based on the schema). In Figure 1
the variable $people is bound to an element; variables $name and
$student are bound to values. Third, we assume that queries are
evaluated under a set semantics. In other words, we assume that
duplicate results are eliminated in the original and rewritten query.
Finally, we assume that a tree pattern uses the child axis of XPath
only. It is possible to extend the algorithm to work with queries
that use the descendant axis. For purposes of exposition, we as-
sume that the schema mapping does not contain sibling blocks with
the same element tag. Handling such a case requires the algorithm
to consider multiple possible satisfying paths (and/or predicates) in
the tree pattern.

Intuitively, the rewriting algorithm performs the following tasks.
Given a query � , it begins by comparing the tree patterns of the
mapping definition with the tree pattern of � — the goal is to find
a corresponding node in the mapping definition’s tree pattern for
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every node in the � ’s tree pattern. Then the algorithm must re-
structure � ’s tree pattern along the same lines as the mapping re-
structures its input tree patterns (since � must be rewritten to match
against the target of the mapping rather than its source). Finally, the
algorithm must ensure that the predicates of � can be satisfied us-
ing the values output by the mapping. The steps performed by the
algorithm are:
Step 1: pattern matching. This step considers the tree patterns
in the query, and finds corresponding patterns in the target schema.
Intuitively, given a tree pattern, � in � , our goal is to find a tree
pattern � � on the target schema such that the mapping guarantees
that an instance of that pattern could only be created by following
� in the source. The algorithm first matches the tree patterns in
the query to the expressions in the mapping and records the corre-
sponding nodes. In Figure 1, the darker lines in the representation
of the schema mapping denote the tree pattern of the query (far left)
and its corresponding form in the mapping (second from left). The
algorithm then creates the tree pattern over the target schema as
follows: starting with the recorded nodes in the mapping, it recur-
sively marks all of their ancestor nodes in the output template. It
then builds the new tree pattern over the target schema by traversing
the mapping for all marked nodes.

Note that � � may enforce additional conditions to � , and that there
may be several patterns in the target that match a pattern in the
query, ultimately yielding several possible queries over the target
that provide answers to � . If no match is found, then the result-
ing rewriting will be empty (i.e., the target data does not enable
answering the query on the source).
Step 2: Handling returned variables and predicates. In this step
the algorithm ensures that all the variables required in the query can
be returned, and that all the predicates in the query have been ap-
plied. Here, the nesting structure of XML data introduces subtleties
beyond the relational case.

To illustrate the first potential problem, recall that our example
query returns advisee names, but the mapping does not actually re-
turn the advisee, and hence the output of Step 1 does not return the
advisee. We must extend the tree pattern to reach a block that ac-
tually outputs the $advisee element, but the <advisor> block
where $advisee is bound does not have any subblocks, so we can-
not simply extend the tree pattern. Fortunately, the <advisor>
block enforces equality between $advisee and $student, which
is output by the <name> block. We can therefore rewrite the tree
pattern as $student in /S2/people/student, $advisor in
$student/advisor, $name in $student/name. Of course,
it is not always possible to find such equalities, and in those cases
there will be no rewriting for that pattern.

Query predicates can be handled in one of three ways. First,
a query predicate (or one that subsumes it) might already be ap-
plied by the relevant portion of the mapping (or might be a known
property of the data being mapped). In this case, the algorithm can
consider the predicate to be satisfied. A second case is when the
mapping does not impose the predicate, but returns all nodes nec-
essary for testing the predicate. Here, the algorithm simply inserts
the predicate into the rewritten query. The third possibility is more
XML-specific: the predicate is not applied by the portion of the
mapping used in the query rewriting, nor can the predicate be eval-
uated over the mapping’s output — but a different sub-block in the
mapping may impose the predicate. If this occurs, the algorithm
can add a new path into the rewritten tree pattern, traversing into
the sub-block. Now the rewritten query will only return a value if
the sub-block (and hence the predicate) is satisfied.

In our case, the query predicate can be reformulated in terms
of the variables bound by the replacement tree pattern as follows:

UW Stanford

UPenn

MSR

IBM DBLP

ACM

CiteSeer

Submissions DigReview

VLDB

SIGMOD

PODS

DB−Projects

Berkeley

Figure 2: The topology of the DB-Research Piazza application.

$advisor="Ullman". The resulting rewritten query in our exam-
ple is the following.

<result> {
for $student in /S2/people/student,

$advisor in $student/advisor/text(),
$name in $student/name/text()

where $advisor = "Ullman"
return

<student> { $name } </student>
}
</result>

Note that in the above discussion, we always made the assump-
tion that a mapping is useful if and only if it returns all output val-
ues and satisfies all predicates. In many cases, we may be able to
loosen this restriction if we know more information about the re-
lationships within a set of mappings, or about the properties of the
mappings. For instance, if we have two mappings that share a key
or a parent element, we may be able to rewrite the query to use both
mappings if we add a join predicate on the key or the parent ele-
ment ID, respectively. Conversely, we may be able to make use of
properties to determine that a mapping cannot produce any results
satisfying the query.

In the full version of the paper we prove the following theorem
that characterizes the completeness of our algorithm.

THEOREM 1. Let
�

and � be source and target XML schemas,
and � be a query over

�
, all of which satisfy the assumptions spec-

ified in the beginning of this section. Then, our algorithm will com-
pute a query � � that is guaranteed to produce all the certain an-
swers to � for any XML instance of � . !

5. A PIAZZA APPLICATION
To validate our approach, we implemented a small but realistic

semantic web application in Piazza. This section briefly reports on
our experiences. While our prototype is still relatively preliminary,
we can already make several interesting observations that are help-
ing to shape our ideas for future research.

The Piazza system consists of two main components. The query
reformulation engine takes a query posed over a node, and it uses
the algorithm described in Section 4 in order to chain through the
semantic mappings and output a set of queries over the relevant
nodes. Our query evaluation engine is based on the Tukwila XML
Query Engine [18], and it has the important property that it yields
answers as the data is streaming in from the nodes on the network.

We chose our application, DB Research, to be representative of
certain types of academic and scientific data exchange. Our proto-
type relates 15 nodes concerning different aspects of the database
research field (see Figure 2, where directed arrows indicate the di-
rection of mappings). The nodes of DB Research were chosen
so they cover complementary but overlapping aspects of database
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Table 1: The test queries and their respective running times.
Query Description Reformulation time # of reformulations
Q1 XML-related projects. 0.5 sec 12
Q2 Co-authors who reviewed each other’s work. 0.9 sec 25
Q3 PC members with a paper at the same conference. 0.2 sec 3
Q4 PC chairs of recent conferences + their projects. 0.5 sec 24
Q5 Conflicts-of-interest of PC members. 0.7 sec 36

research. All of the nodes of DB Research, with the exception
of DB-Projects, contribute data. DB-Projects is a schema-only node
whose goal is to map between other sources. DB Research nodes
represent university database groups (Berkeley, Stanford, UPenn,
and UW), research labs (IBM and MSR), online publication archives
(ACM, DBLP, and CiteSeer), web sites for the major database con-
ferences (SIGMOD, VLDB, and PODS), and DigReview, which is
an open peer-review web site. The Submissions node represents
data that is available only to a PC chair of a conference, and not
shared with others. The node schemas were designed to mirror
the actual organization and terminology of the corresponding web
sites. When defining mappings, we tried to map as much informa-
tion in the source schema into the target schema as possible, but a
complete schema mapping is not always possible since the target
schema may not have all of the attributes of the source schema. We
report our experiences on four different aspects.

Reformulation times: the second and third columns of Table 1
show the reformulation time for the test queries and the number of
reformulations obtained (i.e., number of queries that can be posed
over the nodes to obtain answers to the query). We observe that
even with relatively unoptimized code, the reformulation times are
quite low, even though some of them required traversing paths of
length 8 in the network. Hence, sharing data by query reformu-
lation along semantic paths appears to be feasible. Although we
expect many applications to have much larger networks, we also
expect many of the paths in the network to require only very sim-
ple reformulations. Furthermore, by interleaving reformulation and
query evaluation, we can start providing answers to users almost
immediately.

Optimization issues: the interesting optimization issue that arises
is reducing the number of reformulations. Currently, our algorithm
may produce more reformulations than necessary because it may
follow redundant paths in the network, or because it cannot detect a
cyclic path until it traverses the final edge. Minimizing the number
of reformulations has been considered in two-tier data integration
systems, but the graph-structured nature of Piazza presents novel
optimization issues.

Management of mapping networks: as we noted, due to differ-
ences between schemas of nodes, mappings may lose information.
Just because there are two paths between a pair of nodes does not
mean that one of them is redundant: one path may preserve in-
formation lost in the other. In fact, we sometimes may want to
boost a set of paths by adding a few mappings that were not origi-
nally there. Analyzing mapping networks for information loss and
proposing additional mappings presents an interesting set of chal-
lenges to investigate.

Locality of concept management: even comprehensive attempts
to model the world with schemas or ontologies are ultimately ap-
proximations of the real world, and there may always exist some
ambiguity in their meanings. Most users will have the same un-
derstanding of the concepts defined by a schema, but some dis-
crepancies are bound to occur. In this respect, we believe that the
point-to-point nature of the Piazza network architecture provides a
significant advantage over the use of global ontologies or mediated

schemas. Since nodes are free to choose with whom they would
like to establish semantic connections, a node is likely to map into
other nodes with a similar schema, because that is simply easier.
As a result, a large network is likely to have clusters of nodes with
a similar view of the world, and it will be easier to track discrepan-
cies across clusters. In contrast, an architecture that maps all nodes
to a single mediated schema is likely to suffer more severely from
discrepancies because it requires global consistency.

Finally, we note that semantic web applications will differ on
how strict answers need to be. If an application affects sensitive
resources (e.g., bank accounts or even schedules), we should en-
sure that mappings are carefully controlled. However, much of the
promise of the semantic web lies in systems that use the semantic
markup to provide best effort query answering. Piazza provides an
infrastructure for supporting both kinds of systems, but it empha-
sizes the flexibility and scalability needed for the latter kind.

6. RELATED WORK
One of the key goals of Piazza is to provide semantic mediation

between disparate data sources. Federated databases [32] and data
integration systems [27, 22] both address this problem, but they
rely on a two-tier mediator architecture, in which data sources are
mapped to a global mediated schema that encompassed all available
information. This architecture requires centralized administration
and schema design, and it does not scale to large numbers of small-
scale collaborations. To better facilitate data sharing, Piazza adopts
a peer-to-peer-style architecture and eliminates the need for a sin-
gle unified schema — essentially, every node’s schema can serve
as the mediated schema for a query, and the system will evaluate
schema mappings transitively to find all related data. Our initial
work in this direction focused on the relational model and was pre-
sented in [16]; a language for mediating between relational sources
has recently been presented in [5]. Mappings between schemas can
be specified in many ways. Cluet et al. suggest a classification
of mapping schemes between XML documents in [8]; following
their framework, we could classify our system as mapping from
paths to (partial) DTDs. The important, but complementary issue
of providing support for generating semantic mappings between
peers has been a topic of considerable interest in the database com-
munity [29, 11], and in the ontology literature [23, 12, 26]. The
problem of estimating information loss in mappings has also been
studied [24]. An important problem that we have not yet addressed
is that of potential data source inconsistencies; but this problem has
received recent attention in [3, 20].

A second goal of this paper is to address not only mediation
between XML sources, but to provide an intermediary between
the XML and RDF worlds, since most real-world data is in XML
but ontologies may have richer information. Patel-Schneider and
Simeon [28] propose techniques for merging XML and RDF into
a common, XML-like representation. Conversely, the Sesame [7]
stores RDF in a variety of underlying storage formats. Amann et
al. [2] discuss a data integration system whereby XML sources are
mapped into a simple ontology (supporting inheritance and roles,
but no description logic-style definitions).

The Edutella system [25] represents an interesting design point
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in the XML-RDF interoperability spectrum. Like Piazza, it is built
on a peer-to-peer architecture and it mediates between different
data representations. The focus of Edutella is to provide query and
storage services for RDF, but with the ability to use many differ-
ent underlying stores. Thus an important focus of the project is
on translating the RDF data and queries to the underlying storage
format and query language. Rather than beginning with data in a
particular document structure and attempting to translate between
different structures, Edutella begins with RDF and uses canoni-
cal mappings to store it in different subsystems. As a result of
its inherent RDF-mediated architecture, Edutella does not employ
point-to-point mappings between nodes. Edutella uses the JXTA
peer-to-peer framework in order to provide replication and cluster-
ing services.

The architecture we have proposed for Piazza is a peer-to-peer,
Web-like system. Recently, there has been significant interest in
developing grid computing architectures (see www.mygrid.org.uk,
www.gridcomputing.com), modeled after the electric power grid
system. The goal is to construct a generic parallel, distributed en-
vironment for resource sharing and information exchange, and to
allow arbitrary users (especially scientific users) to “plug in” to the
grid. As noted in the lively discussion in [30], there will be some
interesting relationships between grid computing and the Semantic
Web. We believe that Piazza provides a data management infras-
tructure to support data services on the grid.

Finally, we note that Piazza is a component of the larger Revere
Project [14] that attempts to address the entire life-cycle of content
creation on the Semantic Web.

7. CONCLUSIONS AND FUTURE WORK
The vision of the semantic web is compelling and will certainly

lead to significant changes in how the Web is used, but we are
faced with a number of technical obstacles in realizing this vi-
sion. Knowledge representation techniques and standardized on-
tologies will undoubtedly play a major role in the ultimate solu-
tion. However, we believe that the semantic web cannot succeed if
it requires everything to be rebuilt “from the ground up”: it must be
able to make use of structured data from non-semantic web-enabled
sources, and it must inter-operate with traditional applications. This
requires the ability to deal not only with domain structure, but also
with document structures that are used by applications. Moreover,
mediated schemas and ontologies can only be built by consensus,
so they are unlikely to scale.

In this paper, we have presented the Piazza peer data manage-
ment architecture as a means of addressing these two problems, and
we have made the following contributions. First, we described a
mapping language for mapping between sets of XML source nodes
with different document structures (including those with XML seri-
alizations of RDF). Second, we have proposed an architecture that
uses the transitive closure of mappings to answer queries. Third, we
have described an algorithm for query answering over this transi-
tive closure of mappings, which is able to follow mappings in both
forward and reverse directions, and which can both remove and re-
construct XML document structure. Finally, we described several
key observations about performance and research issues, given our
experience with an implemented semantic web application.

Although our prototype application is still somewhat prelimi-
nary, it already suggests that our architecture provides useful and
effective mediation for heterogeneous structured data, and that adding
new sources is easier than in a traditional two-tier environment.
Furthermore, the overall Piazza system gives us a strong research
platform for uncovering and exploring issues in building a seman-
tic web. We are currently pursuing a number of research directions.

A key aspect of our system is that there may be many alternate
“mapping paths” between any two nodes. An important problem
is identifying how to prioritize these paths that preserve the most
information, while avoiding paths that are too “diluted” to be use-
ful. A related problem at the systems level is determining an op-
timal strategy for evaluating the rewritten query. We are also in-
terested in studying Piazza’s utility in applications that are much
larger in scale, and in investigating strategies for caching and repli-
cating data and mappings for reliability and performance.
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